Chromium: A Stream Processing
Framework for Interactive
Rendering on Clusters

Greg Humphreys, Mike Houston, Ren Ng
Stanford University

Sean Ahern, Randall Frank
Lawrence Livermore National Laboratories

Peter Kirchner, James T. Klosowski
IBM T.J. Watson Research

Why Clusters? =

Commodity parts
Complete graphics pipeline on a single chip
Extremely fast product cycle
More feature innovation
Flexibility
Configurable building blocks
Cost
Driven by consumer demand
Economies of scale

Why Stream Processing?

Elegant mechanism for dealing with huge data
Explicitly expose and exploit parallelism
Hide latency
State of the art in many fields:
Databases [Terry92, Babu01]
Telephony [Cortes00]
Online Algorithms [Borodin98,0’Callaghan02]
Sensor Fusion [Madden01]
Media Processing [Halfhill00,Khailany01]
Computer Architecture [Rixner98]
High Performance Graphics [Owens00, Purcell02, NVIDIA, A'I:I]

The Problem Ay

Scalable graphics solutions are rare and
expensive

Commodity technology is getting faster
But it tends not to scale

Cluster graphics solutions have been
inflexible

Stream Processing

Streams:
Ordered sequences of records
Potentially infinite

Stream Transformations:
Process only the head element
Finite local storage

Stream
Source

Stream
Output

Stream
Source

WireGL

[Humphreys01]

App

WireGL Shortcomings

Sort-first
Can be difficult to load-balance
Screen-space parallelism limited

Heavily dependent on spatial locality

Resource utilization
Geometry must move over network every frame

Server’s graphics hardware remains underutilized

We need something more flexible

Graphics Stream Processing =T

Treat OpenGL calls as a stream of commands

Form a DAG of stream transformation nodes
Nodes are computers in a cluster

Edges are OpenGL APl communication

Each node has a serialization stage and a
transformation stage

Stream Transformation

Serialized stream is dispatched to “Stream
Processing Units” (SPUs)

Each SPU is a shared library
Exports the OpenGL interface

Each node loads a chain of SPUs at run time

Common usage: intercept a few OpenGL calls,
pass all others to downstream SPU

Chromium: General Approach g”k—'

Replace system’s OpenGL driver
Industry standard API

Support existing unmodified applications

Manipulate streams of APl commands
Alter/inject/discard commands and parameters

Route commands over a network

Render commands using graphics hardware

Stream Serialization =

Convert multiple streams into a single stream
Context-switch between streams [Buck00]

Constrain ordering using Parallel OpenGL
extensions [Igehy98]

Two kinds of serializers: \
Network server: ~

Unmodified serial application A
Custom parallel application

Application:

Example: WireGL Reborn

App Server

Tilesort Readback | Send
App Server \

Tilesort Readback | Send S

5 Render
L]

Server

Tilesort Readback Send

Example: Sort-Last

Application

Readback | Send

Application

T

Sort-Last Binary Swap

Application

Readback | Send

Server

Render

Readback | BSwap | Send
[I

—

Application

Readback | BSwap | Send
]

Application

Readback | BSwap | Send

Application

Readback | BSwap | Send

Application

Readback Send] [

Server
Render

Application runs directly on graphics hardware [Ma94]
Same application can use sort-last or sort-first

Binary Swap Results Example: UI Reintegration

—=

-
m One node Server

% Integrate

“h.Two nodes

15+ Qwi{_ App Server v [v
- Integrate Scalable T221

== Fightnodes

Tilesort

Graphics Display
R0 - Engine (3840x2400)

Server
Integrate

Chromium Protocol
— UDP/Gigabit Ethernet
Digital Video Cables

CATIA Driving IBM’s T221 €=

Example: Hidden-Line Drawing @"‘k—‘“'

Buffer a complete frame
Play the frame back twice
Wrinkles:
Vertex array pointers may not be valid at playback

State queries (e.g. glGet) must be handled
immediately

Application
StateQuerylVertexArray HiddenLine

Render

Jet engine nacelle model courtesy Goodrich Aerostructures
Chromium is the only practical way to drive the T221 with an existing application
Demonstrated at Supercomputing 2001 17

Is “HiddenLine” Really a SPU? # ==

Technically, no!
Requires potentially unbounded resources
Alternate design:

2 [poyors]
StateQuery [VertexAr HiddenLine Readback |Send
HiddenLi v

Readback [Send
s Depth
‘ Composice

Future Directions == Summary/Predictions

Taxonomy of non-invasive techniques Manipulation of graphics streams is a
Classify SPUs and algorithms powerful abstraction for cluster graphics
Identify tradeoffs in design Achieves both input and output scalability
End-to-end visualization system for 4D data Providing mechanisms instead of algorithms
Data management and load balancing allows greater ﬂeXib“ity
Data management algorithms can be built into a
parallel application or embedded in a SPU

Flexible remote graphics will lead to a
revolution in ubiquitous computing

Volume compression
Remote/Ubiquitous Visualization
Scalable graphics as a shared resource

Transparent remote interaction with (parallel) apps

Acknowledgements

Pat Hanrahan

Brian Paul and Alan Hourihane
lan Buck and Matthew Eldridge
Chris Niederauer

All the Chromium users

DOE VIEWS grant #B504665

SPU Inheritance

The Readback and Render SPUs are related
Readback renders everything except SwapBuffers

Readback inherits from the Render SPU
Override parent’s implementation of SwapBuffers

All OpenGL calls considered “virtual”

Try It Yourself

Chromium is open-source
Available from chromium.sourceforge.net

Runs on:
Windows
Linux (tested on Intel and Playstation2)
IRIX
AIX
Solaris
HPUX
Tru64
Mac OS X (soon)

void RB_SwapBuffers (void)
{
self.ReadPixels(0, O, w, h, ...);

Clear(GL COLOR BUFFER BIT) ;
.BarrierExec(READBACK BARRIER) ;
.RasterPos2i(tileX, tileY);
.DrawPixels(w, h, ...);
.BarrierExec(READBACK BARRIER) ;
.SwapBuffers() ;

Easily extended to include depth composite
All other functions inherited from Render SPU

